
06/201372

EXTRA+

This post is more about career growth than Agile,
but somehow I think the Agile approach is rele-
vant here. Agile, as we know it, is an approach to

software design. It can also be an approach to manag-
ing one’s own career.

Floundering
A friend of mine recently said this: “Your attitude de-
termines your altitude.” Although he was speaking in a
general sense, I couldn’t help but think of the applica-
tion of this motivational advice in relation to software en-
gineering. It is relevant because as software engineers,
our career growth is in our hands – perhaps to a greater
degree than in any other field.

My first “real job” after college was working for a large
defense contractor. I had interned with the company
and was offered a position after graduation. Naturally, I

was thrilled about the offer and the comfort of knowing
that I had a job waiting as soon as I wrapped up my last
year of Computer Science at Ball State University.

My internship had been typical of many: Learning the
ropes of the corporate world, learning that the process
of creating software is very different than what is done in
college and generally performing a number of small tasks
(the stuff that the ‘real’ engineers didn’t want to do). As
simple as the internship had been, I knew that the com-
pany did cool stuff, and that I wanted to work on that cool
stuff. The following year, I was so excited to begin my ca-
reer that I didn’t bother to take any time off before start-
ing. I graduated on a Saturday and started my new job
two days later. Looking back, it probably wouldn’t have
been a bad idea to take a few weeks off, but I was sick
of Ramen Noodles and ready to start making real money.

Although I already knew a bit about the company, I
wasn’t fully prepared for what happened next. I was
ready to hit the ground running. Contribute! Write
lots and lots of code! The first week of work – the en-
tire week – was spent in various orientation activities
– meeting other new employees, watching videos, com-
pleting the required HR classes and so on. Boring, sure,
but part of the requirements of working for a corporate
giant. Many of us have been there.

This corporate giant had a traditional approach to en-
gineering, one that came from a legacy of experience
with electrical engineering and driven by the best per-
ceived best approach at the time: The dreaded old Wa-
terfall SDLC. Agile, RUP, Iterative Design – these were
things that I had never heard of. Even my Computer Sci-
ence teachers hadn’t the slightest idea about the emerg-
ing approaches to software engineering. To be clear, I’m
not trying to be critical here: Software engineering as a
discipline was well established at the time, but the silver

Do Not Flounder
I have no idea whether or not most developers using Agile have
actually read the “Agile Manifesto.” Here it is:
We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Figure 1. Remember This? (Probably all too well)

en.sdjournal.org 73

DO NOT FLOUNDER

bullet to good software design and development was still
something of a constant question. (As much as we’ve all
grown to love Agile and its variants, approaches will al-
ways continue to evolve. Let’s hope so, anyway).

It appeared to me as though some people in the work-
place had an old waterfall approach to their career: It
starts with requirements gathering (figuring out what it
is I want to do) and ending in maintenance (just keep
doing this until I retire). To be fair, I know I’m oversim-
plifying it a bit the waterfall approach a bit. Even the
most old fashioned approaches often iterative through
the traditional waterfall. Bear with me...

Orientation complete, I was eager to get started – to
be a real software engineer!

But that didn’t happen. I was on a project that required
heavy up front design, and significant learning (on my
part) about digital signal processing and real-time em-
bedded programming. A well-meaning manager, trying
to give direction in the only way he knew how, provided
me with piles of documents, I suppose with the expecta-
tion that I would learn by reading.

Read this. Done? Read this. Done? Read this...
Repeat
All the documents looked the same, and it was difficult to
keep my eyes open, much less comprehend the words.
The more I sat and read, the more frustrated I became,
and soon I began dreading work, and counting the hours
to the end of the day. As far as I could tell, I was getting
paid to do nothing. That summer I saw the movie Office
Space (I’m proud to say that I’m one of the few who saw it
in the theater), and I became even more distraught. That
movie showed the dreaded side of the corporate world,
and I left the movie theater feeling awful.

Had I chosen the wrong career? Would it always
be this boring?
I could barely stand the thought of reading yet anoth-
er 100 page document full of words and acronyms that
meant nothing. The thought of spending the next 30 or
40 years like this was downright depressing.

There were a number of problems:

��� ,� ZDV� D� QHZ� SURJUDPPHU� ZLWKRXW� WKH� QHFHVVDU\�
background to get my hands dirty.

��� 0\�PDQDJHU�GLGQ¶W�NQRZ�ZKDW�WR�GR�ZLWK�PH�
��� 7KH�SURMHFW�,�ZDV�RQ�ZDV�LQ�WKH�HDUO\�VWDJHV�RI�GHVLJQ�
��� $OWKRXJK�,�ZDV�HDJHU��,�ZDV�FOXHOHVV�
��� 7KH�HQWKXVLDVP�,�RQFH�KDG�ZDV�TXLFNO\�IDGLQJ�DZD\�

Design, at least there and then, meant constant
reading, re-reading and review of hundreds of pages
RI� H[WUHPHO\� VSHFL¿F� UHTXLUHPHQWV�� 7KH� 656� �Soft-
ZDUH� 5HTXLUHPHQWV� 6SHFL¿FDWLRQ) was the master,
and it had to be perfect before anyone considered

writing a line of code. This phase of software could
take many months – years even, the goal being the
creation of perfect software by way of big (massive)
up-front design. Looking back, maybe it worked for
the corporation (although I think it did more to hold
EDFN���)RU�DOO�RI�LWV�ÀDZV��WKH�WUDGLWLRQDO�ZDWHUIDOO�DS-
proach was the best anyone had come up with. The
defense contractor had plenty of money to spend on
very long design phases.

As I continued reading, bored and annoyed, and grow-
ing increasingly jaded, I wondered if I would remember
how to dereference a pointer after so much time spent
reading documents with no opportunity to write code. I
knew one thing: If what I was doing was ‘Software Engi-
neering,’ I didn’t want to do it.
The real problem not as much with the employer as it
was with me: I didn’t know how to take charge of my
position. I didn’t even know it could be done! College
hadn’t taught me how to be a software engineer in the
real world. I was following the lead of others – folks who
were content to take things nice and slow, living out the
maintenance phase of their careers.

I floundered
Again, I was new to this world. Sure, I got good grades
in my CS classes. I enjoyed them. But applying that
knowledge to my first steps into a career eluded me.
My job, as I understood it, was to do whatever my boss
told me to do – nothing more, nothing less. I wrongly
suspected that doing more might, in some way, be an
annoyance. Coupled with a boss who didn’t have any-
thing for me to do (at least nothing that a junior devel-
oper could jump into), it created an awkward, negative
setting (and I’m not being dramatic when I say that it
was depressing). The career I had once imagined to be
fun and exciting as proving to be anything but. The best
part of my day was lunch, when I would step outside
for a nice long walk, thinking about what other careers
I could pursue.

One day, while sitting at my desk reading more con-
fusing documentation, I nodded off. That’s right – I actu-
ally fell asleep at work! My head hit the desk and I felt
like I was in high school all over again – bored, tired and
perplexed. Falling asleep, ironically, served as a wake
up call. This could not continue.

Doug to the Rescue
After several months of monotony, I worked up the cour-
age to talk to my boss, and tell him of my desire to do
something else. This was no small feat. My high-school
writing teacher used to say, “Don’t rattle my cage!”
I didn’t wish to rattle any cages. (Mrs. Hemminger, if
you’re reading this, you were full of wonderful quips!)

Ultimately, after that awkward situation, I think my
boss may have been relieved – After all, he was giv-

06/201374

EXTRA+

en a young graduate as a new hire, but he didn’t have
sufficient tasks for that hire. It hadn’t been his decision
to hire me. The company simply extended an offer to
an intern and then placed that former intern (addition-
al headcount) somewhere, anywhere, when the time
came. Any small employer would never hire an employ-
ee under such circumstances, but in the world of giant
corporations, this happens.

Soon enough I was moved to another department. Al-
though it was in the same building, this particular depart-
ment had a number of people with a different mindset. It
was a more vibrant group with much more enthusiasm.
Even the lights in this new section of the building seemed
brighter. Why was it different? I’m not sure. Perhaps it
had to do with the employees in the group. Maybe it was
because the project was newer and seemed more inter-
esting. Whatever the reason, it was different.

One guy, Doug (who I thought was old at the time,
but I realize now that he probably only in his 30s), was
a key engineer, and he was eager to spend some time
with me. I can only imagine that he saw something of
himself in me – an eager engineer who just needed a
little direction.

He took the time to share with me some of the things he
was working on. He wasn’t simply doing that which was
asked... He did much more. He explored ideas, created
prototypes and presented his findings. He was constantly
busy, not because he wanted to impress management,
but because he was a curious and energetic engineer. It
was clear that he enjoyed what he was doing.

One conversation between Doug and I shifted my
mindset. While I don’t recall the actual words of the con-
versation, it went something like this:

“Doug, how do you get to do all of this cool stuff? I’d like to
get involved with this.”

“Matt,” he said, “nobody is going to ask you to do it around
here. Just go ahead and do it, and then you’ll get to do more
of it.”

As I think about this now it seems so very obvious,
but at the time it was not. Perhaps my mindset had
much to do with the world in which I grew up. Most of
the people in my small home of Auburn, Indiana were
union factory workers earning an hourly wage that
seemed substantial compared to my mother’s $15,000
per-year income as a receptionist. I was told from an
early age that the foundry was a great place to work,
and the labor union looked after its employees. These
people went to work for their shift, worked hard and
went home. They did exactly what was asked of them.
Nothing more. Nothing less. Hard workers by any
measure, their jobs were not ones that required ongo-
ing career growth.

Work, in my mind, was a place where you went and
did whatever your boss tasked you with. Sure, I pursued
a degree in computer science, but only because (from
an early age) I knew that I really liked writing comput-
er programs. I wanted to be a “computer programmer”
when I grew up. But as far as turning that desire into a ca-
reer, my outlook was limited. I wanted to work someplace
where the boss asked me to write software – cool soft-
ware – and other than the task given, I didn’t understand
that this was very different than working in a factory.

It wasn’t until I met Doug that my eyes were opened
to the fact that the direction of my career was in my
hands, not my boss’s. I learned something else: Doug
was moving forward and contributing in big ways to the
success of the department by doing more than what
was asked. He was prototyping and experimenting, and
using what he learned to guide the up-front design. He
was doing Agile before any of us knew what Agile Soft-
ware Design was. And while he was as smart as anyone
else, I also learned that motivation is a much more pow-
erful driver of success than smarts.

Doug had all the same tasks on his plate as any other
engineer. He too had to sit through long peer reviews and
read through miles of documentation. But he was never
bored. It wasn’t long before I got my hands on a TI DSP
Prototyping kit. I wasn’t presented with the kit one day out
of the blue. I had to ask people about it, how to get one
and how to get started. I began writing code – experiment-
ing – learning what it all meant. And I tapped Doug on the
shoulder for help often. He never seemed annoyed.

Soon the words on the documents started to become
clear. The words on the pages meant something. I wrote
a state machine in C. Then I wrote an AM modulator...
Then an AM demodulator. I learned that the Fast Fou-
rier Transform that my professors rambled on about ac-
tually had some sort of purpose (but don’t ask me about
it these days).

I pursued Computer Science in college because I was
fascinated by programming. It was fun and amazing to
write code and then see what it does – to discover what
one can make happen, and build upon those discover-
ies. I wanted to go to college so that my job would be a
job of interest. In college, however, one does not learn
about the skills of being a part of the workplace. I didn’t
fully comprehend the difference between a ‘job’ and a
‘career.’ I certainly had no solid understanding of how to
move a career in a desired direction.

Is software engineering always fun? Let’s be hon-
est: No. There are deadlines, and more often than not
these deadlines are tight. There is documentation and
(still) lots of reading. There are annoying bugs (its al-
ways a thrill to find one and squash it). There are per-
sonalities... Different personalities. People often think of
software engineers and folks who stare into a computer
screen with little or no interaction with others. Not so!

en.sdjournal.org 75

DO NOT FLOUNDER

The ability to interact with people, to understand and
communicate is imperative in this field (but I digress).

So yes, there are certainly real-world needs in software
development that aren’t always fun. There are parts that
can be downright tedious, sure. But it is imperative to
maintain that initial fascination that led to this career path
in the first place. This may mean choosing your place of
work wisely. It can be tricky, but I suggest against moving
into a role for which you have all of the skills and experi-
ence required. (Likewise, I think its important for employ-
ers to recognize the need of employees to face a chal-
lenge. So many roles that I see posted seem to indicate
that the hiring company wants a candidate with each and
every skill listed. As for me, I don’t wish to have a job with
nothing to learn). Once the position is chosen, it means
continuous improvement – the personal kind.

Integrity
Every single motivational book out there speaks of integ-
rity. I am currently reading Becoming a Person of Influ-
ence, by John Maxwell and Jim Dorman. About 4 pages in
the words, predictably, are the words, “Integrity is crucial
for business and personal success.” One need not be a
successful businessman and author to write such words.
But are these words true? I’ve certainly spoken with many
people over the years who think not. We all have. We’ve
all thought it! In post Sarbanes-Oxley world, it sometimes
seems as though cynicism rules the day. I think it is the
corruption that makes the news, and vast majority of work-
place leadership is of great integrity. This is my personal
experience. (If this isn’t so, I’d rather not know).

Integrity is a two-way street, and it means that, while
we should expect it of our management, we should act
with it, showing those relying on our output assurance
that we are not just doing our jobs, but doing our jobs
well. Perhaps it makes more sense to say that all work-
ers in all positions, those in leadership and those just
starting out, fresh out of school, should perform with in-
tegrity. It sure sounds nice!

The thing about having integrity is, its generally very
easy to maintain with just a bit of effort. I’m sure we can
all think of scenarios where “doing the right thing” isn’t
necessarily an obvious choice. But most of the time its
very easy. There is a real need for integrity, buzzword
or not, in many situations as a software engineer, deci-
sions small and large that can cause some sort of in-
ternal conflict. We are almost constantly asked for time
estimates, project status and testing results from upper
management. Do we paint a rosy picture, saying what
we think they want to hear, or do we tell the truth? Will
that ticket really take 12 hours to complete, or am I just
padding it with a bit of ‘just in case’ time? Acting without
integrity in this regard can be tempting, sure, but there
is little question about which path is the right way. With
regard to that nice, happy word, ‘integrity,’ the fact of the

matter is that knowing right from wrong is easy. If know-
ing which way is the right way, doing should follow.

Explore
I realize that I am painting a rosy picture here, and some
reading this may roll their eyes a bit. That said, acting
without integrity, even if it means a small lie, can come
back to sting. All the integrity talk really touches on a
much more broad subject. The only point in bringing it
up here is to note that, minimally, a software engineer
should be motivated to stay on task for purposes of in-
tegrity. I say minimally because I think it can be very
easy to stay motivated and highly productive in this ca-
reer – and because, as people who pursued this career
because of a love of writing software, it seems that it
should be even more easy to perform very well as a
software engineer.

We have jobs where we get to play (perform a hobby)
most of the day. We get to put together a big, compli-
cated puzzle. And we get to find new, interesting ways
to put things together. We are, in a sense, artisans (and
I hope the word doesn’t sound melodramatic). How can
this be anything but motivating?

We’ve all floundered. We’ve all had our off days,
where we just cannot focus. So it goes. But, in general,
it seems to me that focusing on something you love do-
ing in the first place should not be an ongoing problem.
Not with so much cool stuff to learn!

I guess I could sum this entire post up with this: If

you’re bored at work, you’re doing it wrong!
Maybe Doug had to learn the same way that I did.

Maybe Doug went through the same early struggles
that I did (I never asked).

Your boss is never going to be upset when you learn
new things and take initiative – on the contrary! You’re
boss will love you, and he or she will be thrilled to have
a team member that makes the entire time look good.
5HPHPEHU��\RXU�ERVV� LV�YHU\�EXV\� WRR��'RQ¶W�H[SHFW�
your boss to constantly check to make sure that you’re
challenged and learning. Additionally, many of us have
bosses who are either non-technical or previously-
technical. They have moved into roles that require at-
tention elsewhere, outside of the details of software
specifics. In this regard, whether your job title is soft-
ware engineer, computer programmer, software devel-
oper, junior programmer, senior programmer, develop-
ment specialist – whatever, we all need to be software
architects. The term ‘code monkey’ should not apply to
any individual who has been hired for his or her ability
to evaluate a problem, determine a solution and im-
plement. This requires constant interest and learning
(and hopefully it is gusto, because then the motivation
comes naturally).

We all know the conversation from the movie Office
Space:

06/201376

EXTRA+

Peter: Our high school guidance counselor used to
ask us what you would do if you had a million
dollars and didn’t have to work. And invariably,
whatever you’d say, that was supposed to be
\RXU� FDUHHU�� 6R� LI� \RX�ZDQWHG� WR� ¿[� ROG� FDUV��
then you’re supposed to be an auto mechanic.

Samir: So what did you say?
Peter: I never had an answer. I guess that’s why I’m

working at Initech.
Michael: No, you’re working at Initech ‘cause that

question is bull**** to begin with. If that quiz
worked, there would be no janitors, because
no one would clean shit up if they had a mil-
lion dollars.

In the movie, Peter Gibbons was a struggling pro-
grammer working on the Y2K bug. His job was te-
dious. It never changed. There was nothing new or
H[FLWLQJ� WR� OHDUQ�� ,� FDQ¶W� LPDJLQH� DQ\RQH� LV� VXFK� D�
UROH� EHLQJ� YHU\� KDSS\�� %XW� 2I¿FH� 6SDFH�� DV� KLODUL-
ous as the movie is, does not convey the reality of
what software engineer can (and should) be. For a
software engineer working on something that is fas-
cinating and enjoyable, a ‘case of the Monday’s’ need
not apply. I’m not going to pretend that I look forward
to coming to work each and every Monday, but I can
honestly say that there are Sunday evenings, many
of them, when I start thinking about what I’m going
to work on tomorrow, and looking forward to it. That’s
a good feeling. Sometimes it feels like those times
when I reserved time on the Apple IIe at the Auburn,
Indiana public library so I could tinker and learn to
program. Back then I did it for free.
6RIWZDUH�HQJLQHHUV�PXVW�H[SORUH�±� WU\�QHZ�WKLQJV�±�

mess around with new stuff. I hope its obvious that this
LVQ¶W� WR�VD\� WKDW�RQH�VKRXOG� LQWHQWLRQDOO\�SXUVXH�H[WUD-
neous distractions. There is a big difference between
a distraction and learning. Facebook is great, but its a
GLVWUDFWLRQ��/HDUQLQJ�%RRWFDPS��H[SORULQJ�*LWKXE��UHDG-
ing Stack Overflow, trying out the new features in Java
��±�WKHVH�FDQ�EH�KLJKO\�UHOHYDQW��LI�QRW�FUXFLDO��DFWLYLWLHV�

in the work of a software engineer. As far as integrity
goes, contrary to my previous assertion, can an engi-
neer of any type have the knowledge necessary to pro-
pose a solution without leading edge knowledge? This
LV� DGYLFH� WR�PDQDJHPHQW� DV�ZHOO�� ,I� \RX� H[SHFW� \RXU�
engineers to offer the best solutions, they must be em-
SRZHUHG�WR�WR�H[SORUH�
7KLV�DGYLFH� LVQ¶W� IRU� WKH�VDNH�RI�\RXU�ERVV�±� LW� LV� IRU�

you, the enthusiastic software engineer. Taking initia-
tive is a sure way to prevent boredom and floundering
±�DQG�DQ�HYHQ�EHWWHU�ZD\�WR�VWD\�FXUUHQW�LQ�D�ZRUOG�WKDW�
is in a constant state of change. We’re fortunate in this
regard: Our jobs change and evolve. We are forced to
challenge ourselves. Maybe “don’t get bored” should be
a part of our job description. There is a good chance
that if the approach being taken on a project is boring, a
simple repeat of something you have done in the past,
there is a better way to go about it. Learn about those
new things! Use your empowerment, the trust your boss
has placed in you, wisely.
1R�PDWWHU�KRZ�VPDUW�ZH�WKLQN�ZH�DUH��KRZ�PXFK�H[-

perience we have or how much we think we know, those
of us involved in software engineering have plenty to
learn with regard to any task at hand, be it simple or
FRPSOH[��:H�DUH�DPRQJ�WKH�IRUWXQDWH�IHZ�ZKR�KDYH�FD-
reers that are directly tied to our hobby. People do this
IRU�IXQ�±�DQG�ZH�JHW�SDLG�IRU�LW��,�FDQ�WKLQN�RI�IHZ�DWWDLQ-
able careers that offer such a benefit.

Rock star sounds like a great career, but it isn’t at-
WDLQDEOH��)LFWLRQ� ZULWHU� VRXQGV� IXQ� WRR� ±� EXW� DJDLQ��
there is little assurance of success. I may be biased,
but I feel like most people have to go to a job that is
boring by its very nature... I won’t go naming any of
those careers, but we can all think of things that our
friends do that sound like an dreadful way to spend the
day. We get to go to work and pursue something that
we loved doing (hopefully) long before we were ever
paid for it. Software engineering is unique. With a four
or two year degree (in some cases with no degree),
we can make a solid income doing something that is
downright fun. A career is software engineering is not
a waterfall. It is agile.

Also, if you’re sick of Ramen Noodles, give it some
time. You’ll grow to love them again.

MATTHEW RUPERT
Matthew Rupert lives in Wake Forest, NC, and is a software
architect with Ateb Inc., (Raleigh, NC). He has been designing
and developing software for 15 years. Rupert graduated with
a bachelor’s degree in computer science from Ball State Uni-
versity. He has worked in a range of software development
and lead roles ranging from defense contractors to health-
care. He blogs regularly on software subjects at http://mat-
thewrupert.net. Rupert lives in Wake Forest, NC.

About Ateb
Ateb (http://www.ateb.com) is best known for our innova-
tive solutions for pharmacy and we introduced Pharmacy
Line, our Interactive Voice Response (IVR) Solution in 1995.
With the constantly changing healthcare landscape, Ateb
has expanded our focus to Adherence Solutions. Pharma-
cy is a major key in solving adherence problems in the US.
Ateb o!ers proven solutions to help pharmacy increase ad-
herence through education, pharmacy interventions, and
reminders. Ateb’s Adherence Solutions include Time My
Meds™ (Automated Med Sync Solution), Comprehensive
Care Solutions, Proactive Re"ll Reminders, and New to Ther-
apy Messaging. Founded in 1992, Ateb is a privately held
company headquartered in Raleigh, NC.

